Search results for "Nonexpansive mapping"
showing 5 items of 5 documents
On the structure of the set of equivalent norms on ℓ1 with the fixed point property
2012
Abstract Let A be the set of all equivalent norms on l 1 which satisfy the FPP. We prove that A contains rays. In fact, every renorming in l 1 which verifies condition (⁎) in Theorem 2.1 is the starting point of a (closed or open) ray composed by equivalent norms on l 1 with the FPP. The standard norm ‖ ⋅ ‖ 1 or P.K. Linʼs norm defined in Lin (2008) [12] are examples of such norms. Moreover, we study some topological properties of the set A with respect to some equivalent metrics defined on the set of all norms on l 1 equivalent to ‖ ⋅ ‖ 1 .
Fixed point theory for a class of generalized nonexpansive mappings
2011
AbstractIn this paper we introduce two new classes of generalized nonexpansive mapping and we study both the existence of fixed points and their asymptotic behavior.
Uniformly nonsquare Banach spaces have the fixed point property for nonexpansive mappings
2006
Abstract It is shown that if the modulus Γ X of nearly uniform smoothness of a reflexive Banach space satisfies Γ X ′ ( 0 ) 1 , then every bounded closed convex subset of X has the fixed point property for nonexpansive mappings. In particular, uniformly nonsquare Banach spaces have this property since they are properly included in this class of spaces. This answers a long-standing question in the theory.
On approximating curves associated with nonexpansive mappings
2011
Let X be a Banach space with metric d. Let T, N : X → X be a strict d-contraction and a d-nonexpansive map, respectively. In this paper we investigate the properties of the approximating curve associated with T and N. Moreover, following [3], we consider the approximating curve associated with a holomorphic map f : B → α B and a ρ-nonexpansive map M : B → B, where B is the open unit ball of a complex Hilbert space H, ρ is the hyperbolic metric defined on B and 0 ≤ α < 1. We give conditions on f and M for this curve to be injective, and we show that this curve is continuous.
MR2410211 (2009b:47107) Păcurar, Mădălina Viscosity approximation of fixed points with $\phi$-contractions. Carpathian J. Math. 24 (2008), no. 1, 88-…
2009
Let T be a nonexpansive self-mapping of a closed bounded convex subset Y of a Hilbert space. For l in (0, 1), the author considers the iteration xl = lf(xl)+(1−l)Txl, where f from Y to Y is a $\phi$-contraction. Then, the author proves that (xl)l converges strongly as l goes to 0 to the unique fixed point of the $\phi$-contraction Pof, where P is the metric projection of Y onto the set FT of fixed points of T. The viscosity approximation method of the paper is obtained from the method proposed by A. Moudafi [J. Math. Anal. Appl. 241 (2000), no. 1, 46–55; MR1738332 (2000k:47085)] for mappings in Hilbert spaces, and by H. K. Xu [J. Math. Anal. Appl. 298 (2004), no. 1, 279–291; MR2086546 (2005…